Conclusion for photosynthesis and solar cell energy

Chloroplast and Thylakoid In photosynthetic bacteria, the proteins that gather light for photosynthesis are embedded in cell membranes. In its simplest form, this involves the membrane surrounding the cell itself.

Conclusion for photosynthesis and solar cell energy

Received Dec 14; Accepted Dec Associated Data Below is the link to the electronic supplementary material. A common theme in the discussions is to explain why photosynthesis appears to absorb less of the available green sunlight than expected.

The expectation is incorrect, however, because it fails to take the energy cost of the photosynthetic apparatus into account. Depending on that cost, the red absorption band of the chlorophylls may be closely optimized to provide maximum growth power. The optimization predicts a strong influence of Fraunhofer lines in the solar irradiance on the spectral shape of the optimized absorption band, which appears to be correct.

It does not predict any absorption at other wavelengths. Electronic supplementary material The online version of this article doi: Light-harvesting, Photovoltaics, Solar energy, Astrobiology Introduction Photovoltaic solar power converters are usually designed to absorb as much of the solar irradiance above the bandgap energy as possible, because maximum power output per surface area is considered to be most profitable.

The photosynthetic solar power converters that maintain life on earth all have approximately the same characteristic absorption spectrum due to chlorophylls and carotenoids in their light-harvesting protein complexes.

Conclusion for photosynthesis and solar cell energy

The existence of exceptions, spectrally different photosynthetic organisms adapted to the available irradiance at the bottom of the photic zone in deep or muddy waters Stomp et al.

Probably inspired by increasing concern about our future energy supply, this unanswered question is attracting renewed interest Terashima et al. It is often pointed out that a mature leaf, especially that of a shade plant, does effectively intercept nearly all visible light.

Some suggest that photosynthesis is not optimized for light absorption because other limiting factors prevail during most of the day. Another proposal is that chlorophyll was selected because of its redox properties rather than its absorption spectrum.

It has even been proposed that chlorophyll-based photosynthesis evolved on account of shading by green-absorbing bacteriorhodopsin-based photosynthetic organisms Goldsworthy The present study extends his analysis to optically thick systems and takes their energy cost into account.

Theory By analogy to minimal models used to describe the competition for light in aquatic photosynthesis, terrestrial photosynthesis may be modeled as a suspension of cells under constant illumination from above, but with two key differences: Only the species whose photosynthetic apparatus provides the most growth power at the top of the suspension will remain on top.

As its population grows, it pushes its average down into its own shade until the lowest cells receive insufficient power for their maintenance. This will be partially compensated for by adjustment of the amount of photosynthetic apparatus per cell, but its genetic modification to optimize the average growth power of the population will not be selected for, because the species would lose dominance at the top and be replaced.

Not what you're looking for?

The proteins involved in light-harvesting and CO2 assimilation constitute a substantial part of photosynthetic cells and their production costs must be correspondingly high. The net growth power gained by the organism, PG, is only the fraction of Pout that is not spent on reproduction of the growth generating equipment: Here denotes the energy cost of power input light-harvesting and the cost of power output chemical storage of the absorbed powerand CG the cost of the rest of the cell, all expressed as a fraction of the total energy cost of the cell.

Conclusion for photosynthesis and solar cell energy

A simple hyperbolic dependence of power output on power input will be assumed, saturating at a maximum Psat that is proportional to the amount of, and hence to the energy invested in producing, the required machinery: However, adding pigments to a black cell would not help, so this can only be true as long as the attenuation of the light intensity by the pigments remains negligible.

In reality, self-shading will cause diminishing returns and an optimal distribution of the absorbers over the spectrum of the incident light must be sought. The question is what spectral distribution would optimize PG if the organism could freely tune the resonance frequency of the electronic transition dipoles that make up its absorption spectrum.

In order to express PG in terms of the absorber distribution, we divide the relevant part of the spectrum into n sufficiently small frequency steps with index i. PG can now be expressed as a function of the parameters gi and the optimum is then found by setting its gradient to zero, i.Photosynthesis is the process by which plants convert solar energy into chemical energy.

In the presence of visible light, carbon dioxide (CO 2) and water (H 2 0) are transformed into glucose and. The solar cell has 83% efficiency in converting light energy into electrical energy. Unfortunately, converting electrical energy into carbohydrate energy is very inefficient.

Photosynthesis can be decomposed into 5 major subparts. Sep 14,  · Solar Energy Essays (Examples) Filter results by: elation of photosynthesis and the semi-conductor-based solar cell Harnessing of Solar Energy Plants harness solar energy to use photosynthesis.

Solar cells harness solar energy to convert it to electricity. Conclusion For Photosynthesis And Cellular Respiration.

Cellular Respiration is the process that allows organisms to use the energy stored in glucose. Photosynthesis the process by which plants, bacteria and some fungi that use energy from sunlight to produce sugar. These two have similarities and differences, too.

Cellular respiration is . Photosynthesis converts ∼ billion tonnes of CO 2 into complex organic compounds annually and produces ∼ billion tonnes of oxygen into the atmosphere. By facilitating conversion of solar energy into chemical energy, photosynthesis acts as the primary energy input into the global food chain.

Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released .

Upgrading Photosynthesis